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Chiral â-amino alcohol units are useful as chiral building blocks
for various biologically active compounds. Among the methods
available for their catalytic enantioselective syntheses,1 catalytic
asymmetric Mannich-type reactions2 of R-alkoxy enolate are of
particular interest, because two adjacent stereocenters are con-
structed simultaneously with a concomitant carbon-carbon bond
formation. Toward this end, Kobayashi reported pioneering work
on the Zr catalysis using preformedR-TBSO- andR-BnO-ketene
silyl acetals, which selectively provided eithersyn- or anti-â-amino
alcohol, respectively.3 Recently, more atom-economical processes,4

that is, the direct addition ofunmodifiedR-hydroxyketone to imines,
were reported by List,5 Barbas,6 and Trost.7,8 Excellent selectivity
was achieved; however, onlysyn-amino alcohols were produced
in those systems.5-7 In addition, the requirement of harsh oxidizing
conditions for the cleavage of theN-protective groups would impose
some limitations on their synthetic utility. Thus, the development
of the complementaryanti-selective direct catalytic asymmetric
Mannich-type reaction ofunmodifiedR-hydroxyketone using an
easily removableN-protective group is in high demand. We report
a novel anti-selective direct catalytic asymmetric Mannich-type
reaction of 2-hydroxy-2′-methoxyacetophenone (2) andN-diphen-
ylphosphinoyl(Dpp) imines3 using a Et2Zn/linked-BINOL 1
complex (Figure 1).9,10

As a part of our continuing project on asymmetric zinc catalysis,
we reported direct catalytic asymmetricsyn-selective aldol10a,d,eand
Michael reactions10b,c of hydroxyketone2 using the Et2Zn/linked-
BINOL 1 ) 4/1 complex and 3 Å molecular sieves (MS 3A). Thus,
we initiated screening using the Et2Zn/1 complex,2, and imines
with variousN-protective groups and determined thatN-Dpp imine
3a was promising. As shown in Table 1, the addition of2 to 3a
proceeded smoothly in the presence of1 (5 mol %), Et2Zn (20
mol %), and MS 3A to afford4a with high selectivity11 (anti/syn
) 94/6, 98% ee) in 97% yield (entry 1). The preferential formation
of the anti-isomer is particularly noteworthy, because the di-
astereoselectivity is complementary to that observed by others.5-7

The reaction reached completion even with reduced catalyst loading
to afford 4a without any loss of diastereo- or enantioselectivity
(entry 2, 3 mol %; entry 3, 1 mol %). The reaction proceeded well
with only 1.1 equiv of2, although there was a slight loss of
reactivity at-20 °C (entry 4). At 0°C, the reaction was completed
using 1.1 equiv of2 to afford4a in 97% yield; the stereoselectivity,
however, decreased somewhat (entry 5). The presence of activated
MS 3A enhanced the reaction rate without affecting stereoselectivity
(entry 3 vs entry 6).

As summarized in Table 2, the present asymmetric zinc catalysis
was applicable to various imines3. All reactions were performed
with 1 mol % of1, 4 mol % of Et2Zn, and MS 3A. The enantiomeric
excesses were uniformly high (98f 99.5% ee) with imines derived
from R-nonenolizable aldehydes. Imines from aromatic aldehydes
having various substituents (3a-3j) afforded products with high
anti-selectivity (dr: 94/6f 98/2, entries 1-10). Ortho-substituents

on the aromatic rings resulted in almost exclusive formation of the
anti-adducts (dr:>98/2, entry 2 and 98/2, entry 8). Although imine
3k from R,â-unsaturated aldehyde had lessanti-selectivity, di-
astereoselectivity was improved at a lower reaction temperature
(entry 12, dr: 81/19 at-30 °C). Imine3l also provided Mannich
adduct in high ee (99%) with modestanti-selectivity (entry 13).
To demonstrate the practical utility, the reaction was performed
on a gram scale with as little as 0.25 mol % of1 (6.2 mg) to afford
4b in excellent yield (99%, 1.92 g), dr (>98/2), and ee (99%) after
6 h (entry 14). Commercial availability of both Et2Zn solution and
linked-BINOL 1 also makes the present system advantageous from
a practical viewpoint.9

The opposite diastereoselectivity between the present Mannich-
type reaction (anti-selective) and the previously reported aldol
reaction (syn-selective)10a using the same Et2Zn/1 complex is
interesting. Because the absolute configurations at theR-position
of both the aldol- and the Mannich-products are identical (2R),12

the facial selection of the Zn-enolate generated from2 should be
same (Si-face shielding), and the electrophiles should approach in
a different manner in these two reactions. We speculate that the
anti-selectivity in the present Mannich-type reaction would be due
to the bulky Dpp group on the imine nitrogen. To avoid steric
repulsion, the Mannich-type reaction would proceed via the
transition state as shown in Figure 2, preferentially affordinganti-
4.12

Facile deprotection of theN-Dpp group and transformation of
the ketone to an ester produce a protectedR-hydroxy-â-amino acid

Figure 1. Structures of (S,S)-linked-BINOL 1, 2-hydroxy-2′-methoxy-
acetophenone (2), andN-diphenylphosphinoyl(Dpp) imine3.

Table 1. Direct Catalytic Asymmetric Mannich-type Reaction of 3a
with a Et2Zn/(S,S)-linked-BINOL 1 ) 4/1 Complex

entry
ligand 1

(× mol%)
ketone 2
(equiv) additive

temp
(°C)

time
(h)

yielda

(%)
drb

(anti/syn)
ee (%)
(anti)

1 5 2 MS 3A -20 2 97 94/6 98
2 3 2 MS 3A -20 3 95 94/6 98
3 1 2 MS 3A -20 9 98 96/4 98
4 1 1.1 MS 3A -20 24 87 96/4 98
5 1 1.1 MS 3A 0 8 97 88/12 95
6 1 2 none -20 18 93 96/4 98

a Isolated yield.b Determined by the1H NMR of the crude mixture.
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in high yield. As shown in Scheme 1,4b was readily converted to
cyclic carbamate5b in 84% yield (two steps) after removal of the
N-Dpp group under acidic conditions,13 followed by treatment with
triphosgene. Baeyer-Villiger oxidation of 5b proceeded with
mCPBA to afford ester6b in 88% yield without any epimerization,
as confirmed by NOE.

In summary, we developed a highly enantio- and diastereo-
selective direct catalytic asymmetric Mannich-type reaction to
provideanti-amino alcohols (yield up to 99%, dr up to>98/2, ee
up to >99.5%). The process worked well with from as little as
0.25 to 1 mol % of catalyst loading. The observed complementary
anti-selectivity, in combination with the facile removal of the Dpp
group, makes the present reaction synthetically useful. Detailed
mechanistic studies of the present reaction, especially to clarify
the origin of theanti-selectivity, are ongoing.
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(6) Córdova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III.J.

Am. Chem. Soc.2002, 124, 1842.
(7) Trost, B. M.; Terrell, L. R.J. Am. Chem. Soc.2003, 125, 338.
(8) For other examples of direct catalytic asymmetric Mannich reaction using

unmodified ketone and/or aldehyde as donors, see: (a) Yamasaki, S.; Iida,
T.; Shibasaki, M.Tetrahedron Lett. 1999, 40, 307. (b) Notz, W.; Sakthivel,
K.; Bui, T.; Zhong, G.; Barbas, C. F., III.Tetrahedron Lett.2001, 42,
199. (c) Juhl, K.; Gathergood, N.; Jørgensen, K. A.Angew. Chem., Int.
Ed. 2001, 40, 2995. (d) Co´rdova, A.; Watanabe, S.-i.; Tanaka, F.; Notz,
W.; Barbas, C. F., III.J. Am. Chem. Soc.2002, 124, 1866. (e) Co´rdova,
A.; Barbas, C. F., III.Tetrahedron Lett. 2002, 43, 7749.

(9) For the synthesis of linked-BINOL1, see: (a) Matsunaga, S.; Das, J.;
Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki,
M. J. Am. Chem. Soc.2000, 122, 2252. (b) Matsunaga, S.; Ohshima, T.;
Shibasaki, M.AdV. Synth. Catal.2002, 344, 4. Linked-BINOL is also
commercially available from Wako Pure Chemical Industries, Ltd. Catalog
No. for (S,S)-1: No. 152-02431.

(10) (a) Kumagai, N.; Matsunaga, S.; Kinoshita, T.; Harada, S.; Okada, S.;
Sakamoto, S.; Yamaguchi, K.; Shibasaki, M.J. Am. Chem. Soc.2003,
125, 2169. (b) Harada, S.; Kumagai, N.; Kinoshita, T.; Matsunaga, S.;
Shibasaki, M.J. Am. Chem. Soc.2003, 125, 2582. (c) Kumagai, N.;
Matsunaga, S.; Shibasaki, M.Org. Lett.2001, 3, 4251. (d) Kumagai, N.;
Matsunaga, S.; Yoshikawa, N.; Ohshima, T.; Shibasaki, M.Org. Lett.
2001, 3, 1539. (e) Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll,
G.; Ohshima, T.; Suzuki, T.; Shibasaki, M.J. Am. Chem. Soc.2001, 123,
2466.

(11) Determined by NOE enhancement of cyclic carbamate synthesized from
4a.

(12) The absolute configuration of4b was determined by Mosher’s method.
Dale, J. A.; Mosher, H. S.J. Am. Chem. Soc.1973, 95, 512. The relative
configuration of4b was determined by X-ray analysis (see Figure 2).

(13) Ramage, R.; Hopton, D.; Parrott, M. J.J. Chem. Soc., Perkin Trans. 1
1984, 1357.

JA034787F

Table 2. Direct Mannich-type Reaction with Various N-Dpp Imines
3a

entry R
ligand 1

(× mol %) product
temp
(°C)

time
(h)

yieldb

(%)
drc

(anti/syn)
ee (%)
(anti)

1 4-MeC6H4 3a 1 4a -20 9 98 96/4 98
2 2-MeC6H4 3b 1 4b -20 6 99 >98/2 99
3 C6H5 3c 1 4c -20 6 98 96/4 99
4 4-MeOC6H4 3d 1 4d -20 6 97 95/5 99
5 4-NO2C6H4 3e 1 4e -20 9 96 97/3 98
6 4-ClC6H4 3f 1 4f -20 4 97 97/3 98
7 4-BrC6H4 3g 1 4g -20 4 97 95/5 98
8 1-naphthyl 3h 1 4h -20 6 97 98/2 >99.5
9 2-naphthyl 3i 1 4i -20 7 95 94/6 99

10 2-furyl 3j 1 4j -20 7 98 96/4 >99.5
11 (E)-cinnam 3k 1 4k -20 4 98 76/24 >99.5
12 3k 1 4k -30 7 97 81/19 >99.5
13 cyclo-propyl 3l 1 4l -30 5 98 80/20 99
14d 2-MeC6H4 3b 0.25 4b -20 6 99 >98/2 99

a 2 equiv of 2 was used. For less soluble imines, THF/CH2Cl2 mixed
solvent was used. See Supporting Information.b Isolated yield.c Determined
by the1H NMR of the crude mixture.d 1.28 g of3b was used.

Figure 2. Working transition state model to affordanti-4 and X-ray
structure ofanti-4b.

Scheme 1. Transformation of Mannich Adducta

a (i) Concentrated HCl(aq)/THF, room temperature, 1 h; (ii) triphosgene,
pyridine, CH2Cl2, -78 °C, 0.5 h, yield 84% (two steps); (iii)mCPBA,
Cl(CH2)2Cl, 60 °C, 3 h, yield 88%.
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